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Genomic selection in practice

Implementation

Statistical Methods

Genomic tools

Use of existing data-collection
systems (phenotypes & pedigrees)
Integration of genomic data
Stabilization of genomic predictions

Breeding value prediction
Adjustments for bias-reduction
Computing algorithms

Efficient genotyping technique
Affordable SNP chips



Dairy cattle evaluation

Conventional animal-model BLUP
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Multi-step evaluation

e Advantages

e Keeping the traditional systems

e Flexibly adjustable for GPTA
(GEBV) in terms of bias

e Accumulated experience

e Concerns
e Only for genotyped animals

 Too many options for the second
step (input values & methods)

e “Pre-selection bias” in the
traditional PTA
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Pre-selection bias

Young genotyped animals:

Only selected data
included in animal model BLUP

Multi-step (MS) genomic evaluation
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Pre-selection bias

Selection criteria not included in MME of
animal model BLUP
Bias down in the prediction

Multi-step (MS) genomic evaluation
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Pre-selection bias

Multi-step (MS) genomic evaluation

Young & mature animals
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Pre-selection bias

e Possible result: underestimated genetic
trend for genomically selected animals

GPTA

o

Traditional PTA &
Multi-step GPTA

Year
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Single-step GBLUP

Single-step GBLUP

>

Young & mature animals

Phenotype
Pedigree GPTA
: (GEBV)
Genomic data GPA
v
Pre-selected Mature
young animals animals

e Advantages

e Expected accountability for
genomic pre-selection

e Use of genotyped & non-

\/

genotyped in the same equations

e Simplicity

e Concerns
e Computational costs (solved)

* |s it reliable for genomic
prediction in dairy cattle?

\/



Production traits of US Holsteins

* Comparison of genetic trends
* Single-step GBLUP GPTA vs the traditional PTA (Data up to 2015)
* Multi-step official GPTA vs the corresponding PTA (Published in 2016)

* Validation reliability for young bulls

* 4-year truncated data (G)PTA :’
« DYD in 2015 vs GPTA in 2011 ssGBLUP (GPTA) 4

* Computational feasibility Traditional BLUP
* APY: Algorithm for Proven and Young (PTA)
for G™1
: Year
Genetic trend of Predictability of

old animals = young bulls



Full data
D oespton | Numberofrecords

Phenotypes 305-d Milk, fat, and protein yield from
US Holsteins; from 1990 to 2015 50,970,954

Pedigree 3 generations back from phenotyped
cows or genotyped animals; 29 651,623
215 unknown-parent groups (UPG)

Genotypes Both male and female; including young
bulls and heifers (#SNPs = 60671) 764,029

Three-trait repeatability model; same as in the official evaluation.



H~! and GPTA

* Mixed model equations
X'R™1X X'R™1Z [b] X'R™1y
ZR'X ZR1'Z+H'1®Zx;! Z'Rly

* Inverse relationship matrix
H'=A"+ [ - ]
0 G —@422
* GPTA of a young animal \ \

GPTA = wiPA + w,DGV — w3P1

* w: Constant to compensate for missing pedigrees h
(w = 1 for the full data). Aguilar et al. (2010)




APY: Algorithm for Proven and Young

* Genotyped animals into two groups: “core” and “non-core”
* Assumption:

u, = Pu,. + P

* BV for non-core (uy,) is a linear function of BV for core (u,).
* APY G-inverse (Misztal et al. 2016)
-1 _ |Gec +Gec GenM ™ GenGoe Gee Gy M
APY —M-lG::nchl M—l

« M~: Diagonal matrix




APY G~1

cc * Sparse
APY

* Easy computations i

* Gives the same GPTA as the
regular G~ using a few core
animals (Fragomeni et al., 2015)

G! GIEy

* How to choose core animals?

* How many? —dimensionality of G
* Which animals? — random choice

Regular G™1 APY G™1



Dimensionality of G

0501 Final Score for US Holsteins * Dim. of G= M,

* M,: the number of independent
chromosome segments
. = the optimal number of core
animals

0.49+
0.481

‘oz 0.47 4

* Estimate of dim. of G
* M, = the # of largest eigenvalues
explaining the most (98%) of
variation in G
» 18,359 cores for 760K US Holsteins

0.46 1

0.45+

Pocrnic et al. (2016)

0.44-

9 91 92 93 94 95 96 97 98 99 100
Percentage of variance explained



Which core animals?

Bradford et al. (2017)

Accuracy
* The best practice:

e Core animals covering all
097 a a generations.

e Or, just randomly choose the core.

1.0 —

0.8 —

0.7 — b | ‘ ‘ e Core animals represent
c independent chromosome

0.6 —
05 |—|—“_\_‘|—h|7_‘ segments in the populations.
|

—‘ * In this study:

O e 18,359 random core animals




Inbreeding and UPG

 QP-transformation for A1 (Westell et al., 1988; Quaas 1988)

a_| AT -ATIQ
_QFA—I QFA—lQ

: Henderson’s rule with inbreeding

« QP-transformation for H™1 (Misztal et al., 2013)

0 0 0
H* = A* + |0 Gl —-A3 —(G™1-A3))Q,
0 —Q5(G™'—-A32) Qu(G™'-A3)Q:




Computing time

Traditional BLUP | Single-step GBLUP

G Py N/A 6 h 53 min
Other 9 min 48 min
Subtotal in preparation 9 min 7 h 41 min
lteration | _Traditional BLUP | Single-step GBLUP_
Number of iterations 402 464
Time per PCG iteration 51 sec 83 sec
Post-processing 12 min 13 min
Subtotal in iterations 5 h 53 min 10 h 54 min

Intel Xeon X7650 (2.26 GHz; 20 cores for preparation and 6 cores for iterations)

Computationally feasible



Cows : ssGBLUP vs traditional PTA (protein)

PTA (kg)
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Cows : ssGBLUP vs traditional PTA (protein)

— ssGBLUP GPTA 1.1 kg/yr : Reasonable
— PTA ;
o - Genotyped cows 0.4 kg/yr : Biased
2 1.2kg/yr
5 r
= : &
= P
o . '.-E‘
o ] All cows ; ;
o--'-'
0 - e
m -

| | | | — | |
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Bulls: ssGBLUP vs traditional PTA (protein)

— ssGBLUP GPTA
PTA

PTA (kg)

2000 2002 2004 2006 2008 2010
Year of Birth

*Genotyped bulls with at least 10 daughters with record(s)



Bias in genotyped cows and bulls

—_ sSGBLUP GPTA —_ ssSGBLUP GPTA
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o T
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—~ N
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Larger bias in cows: shorter generation interval & lower reliability of GPTA



Official (G)PTA: Cows  Official (G)PTA: Bulls

Protein Protein
8 -]
o 1 — msGPTA - E‘;SPTA
— —
PTA ®©

o
5 5
< w0 <
= = <
o o
-
|
o
0 ]
I I I I I I I I I I I I I I I I
2000 2004 2008 2012 2016 2000 2004 2008 2012

Year of Birth Year of Birth



Adjustments on the official PTA

e Official PTA adjusted by Wiggans
et al. (2012)

e Cow trend aligned to bull trend
(Reduction in bias for cows)

e Same trend in PTA and GPTA

e Additional adjustments in the
official evaluation
e Breed difference
* Inbreeding

-100

Milk yield
200 pr
Unadjusted

300 oTA 16kg/yr

200

24kg/yr

i = same as GPTA
100 :

.~ Adjusted PTA |

-200 -

2006 2008 2010 2012



Validation study

Full
Phenotype

Pedigree

Truncated

Phenotype
Genotype
Pedigree

2011
1990 2000 Dec.

2015
Apr.

2011
1990 2000  pec.

A
1
'
v

2015
Apr.

For Daughter
Yield Deviation
(DYD2015)

For GPTA using
ssGBLUP
(GPTA2011)

DYD2015 = by X GPTA2011 + b,
* R?value: validation reliability
» Slope (b;): Bias of prediction

Validation Bulls:
Genotyped young bulls
with no tested daughters
in 2011 but with at least
50 tested daughters in
2015 (N=3,797)




Configurations in H™1

1. Weight (w) on A35:0.9 or 1.0
2. UPG: pedigree only, pedigree + genomic UPG, or no UPG

0 0 0 0 0 0
H'=A"+|0 G'-wA;l 0|+]|0 0 —(G™' - wAZ3)Q,
0 0 ol [0 —Q3(G™'-wAZ3) Q(G™'—wAz)Q,




DYD2015 vs GPTA2011 (Protein)
pata | | | | R bl

Official GPTA 2011 0.51 0.81
P PO P
R2 bl

Truncated 2011 Pedigree 050 096 052 0.78
Ped. + Genomic 039 0.74 0.32 0.51

No UPGs 0.50 0.78



Incomplete pedigree on accuracy & inflation

Incomplete
pedigree
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* Simulated data (Bradford et al., 2017)




Low accuracy with genomic UPG

* GPTA for young genotypes

* NoUPG: GPTA =w;PA+ w,DGV — w3PI ~ DGV
* With UPG: GPTA = w;PA + w,DGV — wsPI + w,UPG = DGV + UPG
L-ar-g-er-v-v;i;hts with many genotypes Not needed for

. o . young animals
 Specific pattern of missing pedigree
* Production traits: many grade animals
* No problem in Finland (Koivula et al. 2017) or for US type traits (Tsuruta 2017)

e Solutions: research in progress
* Option: only DGV for young genotypes
* Metafounders




Indirect prediction

* Optional step to ssGBLUP

1. Compute DGV i from ssGBLUP without young animals
2. Compute SNP effects as 2 = kZ'Gu.
3. Compute DGV for young animals as Uy,4yng = ZAa.

 Successfully applied to Angus & simulated data

Bradford et al. (2017)

Lourenco et al. (2015)



Metafounders

* Regular ssGBLUP: scaling G to A; reasonable in complete pedigree

* Metafounders:  scaling Ato G
* Treat UPG as metafounders
* Estimate genomic relationships among metafounders (I') using G
« Construct A™! and A37 with I' using the Henderson’s and Collau’s methods

* Final form:

0 0
H'™1 = A1 + [ . _
0 G '-AL?

Legarra et al.
(2015)




summary

* The traditional PTA for genotyped animals are likely underestimated;
Needs adjustments in multi-step methods.

e Single-step GBLUP can account for the pre-selection bias.

e Single-step GBLUP may give a reasonable genetic trend without
adjustments.

* Missing pedigree may reduce predictability of genomic predictions.

 We can recover the predictability for young animals; research in
progress.
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